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Abstract. A new method of deriving high temperature series expansions for the susceptibility 
of the king and classical vector spin models is presented. The method involves generating 
the expansion for the inverse of the susceptibility, in which case only contributions from 
star graphs need to be considered. An additional term (the thirteenth) has been added to 
the Ising high temperature susceptibility series for the FCC lattice. Analysis of the extended 
series does not indicate that revision of previous critical estimates is required. In a test of 
the capabilities of the method for other systems, seven terms of the susceptibility series of 
the FCC Heisenberg and planar vector models have been reproduced. Techniques used in 
generating the graph data are discussed. 

1. Introduction 

The Ising model began its career as an idealized picture of a ferromagnet, but in recent 
years it has come to be regarded as a most useful device in its own right. Much of its 
significance lies in its application to the general question of identifying those features of 
the hamiltonian which determine the nature of the critical behaviour. Although the 
exactly known results for the Ising model are by no means abundant, use of series 
expansion techniques has led to what is generally regarded as a reasonable understanding 
of many of its properties, as well as those of other related systems. (Among the many 
reviews of the different aspects of the subject are Fisher (1967), Domb (1970a) and 
Stanley (1971).) 

A number of schemes for generating series expansions have been proposed (eg 
Domb 1960, Wortis 1973); some of these techniques are more suited to a given problem 
than others. Our particular interest is the high temperature expansion for the Ising 
susceptibility, x, for which two techniques have been used successfully in the past, 
one based on a ‘counting theorem’ (Sykes 1961, Sykes et al 1972a), the other on the 
renormalized linked cluster expansion (Wortis 1973, Moore et aE 1969). The first method 
has been applied to a variety of two- and three-dimensional lattices. In the case of the 
face-centred cubic (FCC) lattice it has yielded the coefficients of the x expansion to 
twelfth order ; on lattices of lower coordination number many more terms have been 
generated. Use of this technique calls for an extensive list of graphs together with their 
weak lattice constants. The second method is of a more general nature; it too has been 
used to obtain twelve terms of the FCC lattice expansion, but with a difference of order 
1 in lo6 (itself a seven digit number) in the final term. Here use is made of free graphs of 
limited type (‘free’ in the sense that more than one graph edge may occupy a lattice 
bond, as opposed to the weak constants where graph edges must be located on distinct 
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bonds), and computing the required lattice constants is, therefore, a much simpler task. 
Compensation for this simplification comes in the form of a non-linear integral equation 
which requires solution. This method has not kept pace with the counting theorem 
approach on the other lattices, but it has proved to be ideal for computing correlation 
functions, and immediately generalizes to handle the classical vector models. 

A third technique which has also proved useful in limited circumstances is the 
finite-cluster method. Its sole advantage is that it can be used in studies of king systems 
with random non-magnetic impurities (Rapaport 1972a, b), whereas the two methods 
mentioned above are inapplicable. Ten terms of the FCC series were derived by this 
method. The three different methods have one very noticeable feature in common- 
they all require substantial amounts of computer time. 

The purpose of this article is to describe an entirely different technique which has 
been used successfully to add yet another term to the FCC Ising susceptibility series. 
We have called it the 'inverse susceptibility' expansion method because the computations 
yield an expansion for 2- ' rather than 1. Only multiply connected graphs (stars) are 
required in the calcuIation, and the necessary graphical data are more readily obtained 
than for the calculation based on the counting theorem; the latter involving both 
articulated and multi-component graphs of certain types, in addition to a large fraction 
of the star graphs. The method originated out of the work of Domb and Hiley (1962, to 
be referred to as DH) who computed a sequence of closed-form approximations to x- ' 
in terms of star graphs alone; it is only a small jump from these approximations to the 
coefficients of an exact power series expansion for I-', and progress to much higher 
order is possible. 

In 9 2 we discuss the derivation of the x- ' series, starting from the DH analysis. 
The results serve as the motivation for a direct derivation, whose aim is to by-pass 
the need to rely on the results of the multi-component Mayer theory at the start of the 
analysis. This direct derivation is also discussed. Section 3 outlines the technicalities 
of the calculation-mainly the problems involved in deriving the graph data. The 
analysis of the extended series is discussed in 5 4. In 5 5 we show how the same technique 
can be applied to classical isotropic vector spin systems such as the Heisenberg and 
planar models. 

2. The star expansion 

2.1. Derivation from the Mayer theory 

The Mayer cluster formalism, originally developed for the study of an interacting gas, 
was applied to the Ising lattice problem by Fuchs (1942a). Rushbrooke and Scoins 
(1955) showed that after suitable re-arrangement, the free energy could be expressed 
in terms of the contributions of finite star clusters of spins (for a review of graph ter- 
minology see Essam and Fisher 1970). DH extended the treatment by employing the 
Mayer theory for multi-component systems (Fuchs 1942b) and were able to obtain a 
sequence of closed-form approximations for the reciprocal of the susceptibility in terms 
of stars alone. This work is discussed briefly in what follows. More significant, however, 
is the fact that the same basic analysis is capable of yielding a power series expansion 
for x- ' whose coefficients are determined by studying the form of x- ' (or a generalization 
thereof) for the various finite star clusters of spins which can be embedded in the lattice. 
We start by describing the derivation of the series from the Mayer theory; an alternative 
method of derivation, which does not utilize the Mayer result, appears in tj 2.2. 
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Consider an inhomogeneous cluster G of U, Ising spins with e, nearest-neighbour 
bonds connecting them (in other words a graph with U, vertices and e, edges). The 
spins are to be divided into R classes according to the degree of inhomogeneity of the 
cluster (we will elaborate on this matter shortly) and, in order to distinguish between 
the different classes, the magnetic moments of the spins in the ith class are denoted by 
m i .  DH confined their attention to the particular case R = 2, but their analysis is readily 
extended to arbitrary R .  The expansion for the configurational partition function 
A, (ie the normal partition function Z, without the contribution of the ground state) is 

R R 

where z = exp( - 283); J is the exchange interaction, = l/k,T. t denotes the set 
{rell < e < e,}, and the sum over t is over all sets {re}. The B,  are the irreducible 
cluster sums for G (see DH). a denotes the set {ail 1 < i < R }  ; ai  is the fraction of spins 
in the ith class overturned from the ground state and is defined as 

where p i  = exp( - 2PmiH) (H is the applied magnetic field). For the homogeneous 
cluster ( R  = 1)  we have the familiar relation a = 4 (magnetization + 1). 

Equation (2.1) is essentially an expansion in terms of the magnetization with the 
temperature entering as a parameter, but it contains sufficient information to permit 
deduction of both high and low temperature expansions with either the magnetization 
or the magnetic field entering as parameters in the coefficients. The high temperature 
series which can be deduced from (2.1) has the form 

where w is the commonly used Ising high temperature variable tanhB3. The sum is 
over all star subgraphs s of G,  with (s; G )  denoting the number of weak embeddings of 
s in G. The isolated vertex and edge are regarded as stars for the purpose ofthis discussion, 
and their contributions are included in (2.3). 8, is the weight of star sand is, by definition, 
independent of G. It can, therefore, be calculated by considering only s and its star 
subgraphs-this leads to an iterative scheme for calculating weights which treats the 
clusters in order of increasing e ,  (Sykes er a1 1966). 

If stars with more than emax edges are ignored in the computation of (2.3) the result 
is an expansion for In A, in the variable w correct to order emax. This follows from the 
fact that the leading order term of the power series for Os in w is of order e, or greater. 
For the special case H = 0, (2.3) also follows directly from the partition function 
definition (Domb 1970b). 

If G is a homogeneous cluster, and this includes the infinite regular lattice, the 
zero field susceptibility per spin is defined (neglecting a factor of /3m2) as 

Its reciprocal is readily seen to have the form 

(2.4) 



Inverse susceptibility expansions for Ising and classical vector models 1921 

Rushbrooke and Scoins (1962) derived the early terms of the expansion of x-l for the 
infinite lattice by applying (2.4) to the single component version of the Mayer expansion 
(2.1). The question of inhomogeneity did not arise in this study; it is only when one 
attempts to obtain xG1 from the cluster expansion (2.3) that inhomogeneity becomes 
important. 

DH (see also Hiley and Joyce 1965) generalized (2.4) to the inhomogeneous case by 
replacing a/au by a sum over weighted according to the number vi  of vertices in 
the cluster containing spins of type i .  The result is no longer x i  ' if G is inhomogeneous, 
but since we are interested in the contribution of G to the expansion for the infinite 
lattice, and not in 1; ' itself, this is irrelevant. 

We define the generalization of (2.4)-actually of vGxC '-to be 
R a 

i = l  2 au, 
$G = 1 -In &(a, z) 

A change of variable and use of (2.2) results in 

The dpj/aai are determined by differentiating the functions 

Pi a 
v G  ' p i  

Fi(a ,p , z )  = ui---lnAG(p,z) 0 

(which are merely (2.2)) with respect to c ( k .  We obtain 

-+E- - -  aFi apj  - 0. 8Fi 
auk j =  ' a p j  auk 

Now let 

(2.7) 

with o left undefined for the present. Since 

we have 

and if we define 

then 
EX = v 

where x and v are R component vectors, and E denotes the matrix ( E i j ) .  Also 
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The question of the degree of inhomogeneity of a cluster involves a study of the 
symmetry transformations of the graph, and, in fact, it is sufficient that the vertices in 
each of the R classes be equivalent under any one of these symmetry transformations. 
The assumption of DH that it is sufficient to group the vertices according to their 
degrees is incorrect. For practical purposes it suffices to assign each spin to a different 
class, ie vi  = 1 and R = U,, thereby entirely avoiding the supplementary problem of 
determining sets of equivalent vertices. In this case (2.9) and (2.10) become 

E X  = 1 (2.1 1 )  

and 

(2.12) 

with 1 denoting a vector of U, ones. 
Explicit forms for the E i j  are obtained from (2.7). Above the critical temperature 

in terms of the full partition function Z , ,  Z, itself can be expanded in terms of w (DH) : 

1 V G  

Z, = (cosh BJ)’“ fl (2coshSmiH) 1 + c p‘”w’+ sisj p$)wl+ . . . 
i =  1 ( 121 i > j  131 

where T~ = tanhBm,H. p(* )  is the total number of 1-edged subgraphs (connected and 
otherwise) of G with all vertices of even degree; pi:) is the corresponding number with 
vertices i and j odd, and all the others even. It then follows from (2.13) that 

Ei i  = P = 1 +  p‘”w’ l < i < u ,  

E . .  11 = p!$’, i # j, 1 < i , j  < U, 
1,l 

121 

(2.14) 

where we have chosen w = 4v,P. For this value of o (2.12) reduces to 

$, = PITx. (2.15) 

The elements of matrix E are calculated by computer enumeration of the relevant 
subgraphs of G. Then, in order to obtain $,, equation (2.11) must be solved for x. 
If, as in DH, the goal is an exact expression for $,, the complete solution of (2.11) in 
terms of determinants must be evaluated. Our goal, however, is a series expansion, and 
for this only a limited number of terms in the expansions of the components of x need 
be computed. 

The matrix E is written in polynomial form 

E = I+  E(’)w’ 
i = 1  

where I is the identity matrix and 

The solution to (2.11) is the infinite series 

x = x(0) + x(%v + x(2)w2 + . . . 
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(2.16) 
n = O  \ n =  1 

where the primed sum is over all sets (tml 1 < m < n }  satisfying t ,  + . . . + t, = k. (2.15) 
then yields the result 

l+bc = ( 1 + 1 p'"w' ) ( 1 ).iklwk) 
I 2  1 kB 1 

where y(') = lTdk). 
Application of (2.5) to (2.3) yields the cluster expansion 

I ( /G(w)  = (s; G p s ( w ) ,  
S E C  

(2.17) 

(2.18) 

with Os being the weight of star s in the expansion of x - l  for the infinite lattice. The 
discussion following (2.3) is applicable to (2.18); the Os are obtained iteratively in order 
of increasing e,, and the first non-zero term in the expansion of each @, will be of order 
e, or higher. The final expansion is 

(2.19) 

with (s; 2) denoting the number of weak embeddings of s in the infinite lattice, evaluated 
per lattice site, ie the lattice constant of s. If only those stars with up to emax edges are 
used in computing (2.19) the expansion will be correct to order emax in w .  

An outline of the techniques used to generate the graph data required for the expan- 
sion appears in 9 3. 

2.2. A direct derivation 

The existence of the star cluster expansion for 1- can be established directly without 
having to rely on the results of the Mayer development. The relation 

between the susceptibility of a cluster of Ising spins G and the spin correlation functions 
sij can be written as 

U G X G  = l T s 1 ,  (2.20) 

where S = (sij). In terms of quantities defined earlier we have 

and since sii = 1 it follows from (2.14) that S = P-'E. 
The inverse of (2.20) for a homogeneous cluster is simply 

V G X F 1  = lTS-'l. (2.21) 

Since all the sites of G are equivalent, the sum of the elements in each row (or column) 
of S is equal to a constant Xc(S). NOW Sf = Xc(S)l, SO that if S- '  exists 
Xc (S-') = Zc (S)-', and the result (2.21) follows immediately. 



1924 D C Rapaport 

From (2.11) and (2.15) 

$G = PITE-'l = lTS-'l .  (2.22) 

If G is homogeneous 
to be the appropriate generalization and demonstrate that it 

reduces to v G ~ C 1 .  In the inhomogeneous case we assume (2.22) 

I Sil) I 4 l t )  ~ S(lfF&t) 

' - --'-, - - - - 
S(2tFht) 1 S ( 2 t )  I S(2) 

_ - _ _ _ _  L - -J  _ _ _ _ _ _  
I 

I 
detlSl = det Shr, I 1 j S&t, 

_ _ - _ - _  

expansion for x-'. 
Cramers' rule yields 

The vector S-'1 in (2.22) is the solution to the equation 

det I Sn)l 
fn  = W' 

(2.23) 

leads to the star cluster 

Sf = 1. Application of 

(2.24) 

with d = 1 or 2 depending on which component contains vertex n. For n = t we obtain 

(2.25) 

These results immediately generalize to clusters with more than one articulation point. 
The subtraction of the star subgraph weights in (2.18) during the calculation of $ G ,  

includes the subtraction of the vertex contributions, namely a constant uG, is to be 
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subtracted from I),.. If we define $,, = (CI,, - uG. ,  then from (2.22) and (2.24-5) we find 
that for a general articulated cluster G' (which may now have any number of articulation 
points) 

the sum being over the star components of G'. It follows from (2.18) that OGt = 0, 
because every star subgraph of G' is a subgraph of one of the star components of G'. 
Hence only the star subgraphs of G contribute to x ; ' ,  and if G is now taken to be the 
infinite lattice the expansion of x -  is in terms of star graphs alone. 

2.3. Weights by the labelled edge method 

The great proliferation of stars entering into the computation of the higher order terms 
of the expansion can turn the counting of the star subgraph embeddings (s; G )  into a 
relatively time consuming operation. A scheme for by-passing this calculation entirely 
was described in a different context by Domb (1970b), and used in computing the Ising 
partition function (Hunter 1968) and the susceptibility of Ising systems with impurities 
(Rapaport 1972a). 

The essence of the idea as applied to our problem is to compute (CI, by inverting the 
polynomial expansion of E (9 2. l), but only after assigning a different variable we (ie a 
label) to each edge of G. The distinction between the different we is retained throughout 
the calculation and, at its conclusion, the weight 0, is deduced simply by discarding 
all terms of the multi-variable expansion of (GIG which do not contain contributions from 
all the edges of G. 

This approach is not particularly effective in dealing with large graphs because of 
the multi-variable expansions involved. It can however be modified to yield, for example, 
only the term of order e ,  in the expansion of a,, ie the earliest possible contribution 
of G to the expansion, even for the largest graphs considered. 

2.4. General properties of the weights 

Certain general features of the weights are apparent from the calculations and merit 
some discussion. First, if a star G has four or more odd vertices, the leading order term 
in the expansion of 0, is of order e ,  + 1 or greater. That this is to be expected follows 
from (2.16-7) where it is seen that each contribution to I)G arises from the product of a 
subgraph of G with all vertices of even degree and zero, one, or more subgraphs which 
have just two odd vertices and which are embedded in G in such a manner that their 
product is a graph (possibly multi-edged) with at most two vertices of odd degree. 
Since all the edges of G must contribute to the terms of @,, and the subgraph products 
arising from (2.17) can have at most two odd vertices, it is obvious that there can be no 
term of order e, which utilizes all the edges of G, and hence the first non-zero term in 0, 
will be at least of order e ,  + 1. 

The second observation is that if G has exactly two odd vertices the coefficient 
of the order e ,  term in 0, depends only on the topology of G and not on eG ; if all the 
vertices are even the coefficient depends on e ,  as well. These observations are related 
to the rules for determining graph weights when the x expansion is computed directly 
using the counting theorem (Sykes 1961, Nagle and Temperley 1968). The precise 
relationship between the structures of the series for x and x - l  may be explored by 
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following the fate of each of the graphs contributing to the x expansion when it is 
inverted ; we do not intend to pursue such a study here. 

The proof that the term of order e ,  in the weight of a star G with two odd vertices 
depends on topology alone is straightforward. We see from (2.16-7) that the coefficients 
in the expansion of I), are sums of terms of general form 

(-1) n P ( 1 )  P i O , i I P , l , i * . . . P i n - I , i n .  ( t i )  (12)  (tn) (2.26) 

The subscripts in (2.26) correspond to vertices of G and need not all be distinct. Some 
of these terms will have the property that one or more of their subscripts correspond 
to a particular vertex m. These can be written as 

(- l)”p“’F,pl!;bp~;l,,F, (2.27) 

with F, and F, denoting the remaining pi)), and perhaps themselves involving further 
appearances of subscript m. We now construct a new star G’ with the same topology as 
G by inserting an additional vertex m’ into the edge m - i” .  If we assert that (2.27) is 
one of the terms which contribute to the expansion of @, at order e, the corresponding 
contribution to a,, at order e,, = e,+ 1 is 

( - l)”p(V,(pj!;bp;,‘; + p i ! ; y p y i , ,  - pj!;J7;)m,p;?i,,)F2 , (2.28) 

Since by definition p!,!),,, = 1, pj!;;,’) = pi! :b ,  etc, (2.28) is identical to (2.27). There are 
also terms of form (2.26) which contribute to QG at order e ,  and do not involve vertex m 
explicitly ; these terms are unaffected by the additional vertex and make identical 
contributions to @,, at order e,. . It follows that the order e, term of a, is a function 
of the topology of G only. 

3. Series generation techniques 

The first stage in generating the series expansion is to obtain a complete list of those 
star graphs which are possible contributors to the series. The largest stars which have 
to be considered are those with as many edges (emax) as the order of the last term required 
in the expansion; in this case emax = 13. Furthermore, only those emax edge stars with 
not more than two odd vertices need be studied; for other stars there is no need to go 
beyond emax - 1 edges (a more careful analysis would show that there are small classes 
of stars-among them, for example, those having six odd vertices-where even this is 
unnecessary). 

In a previous susceptibility calculation (Rapaport 1972a) the approach called for 
a list of connected graphs (ie both stars and articulated graphs). In that case we were 
able to build up a suitable graph list by generating the e edge graphs from those with 
e - 1 edges simply by adding single edges. This technique is not ideal for star generation 
because the majority of graphs generated are not stars. 

A more suitable method for generating stars only begins with the generation of a 
list of homeomorphically irreducible stars, ie stars with all vertices of degree two 
suppressed. Stars of this type are called topologies ; all their vertices are of degree three 
or greater (nodes) and, for clarity, the edges of the topologies will be referred to as 
bridges. When the topology generation is complete the stars required for the series 
expansion are obtained by replacing the bridges with chains of edges (see later). 

The topologies are generated by an iterative scheme (Heap 1966). All topologies 
(b, n) having b bridges and n nodes can be obtained from a complete list of (b- 1, n), 
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(b -2, n -  1) and ( b - 3 ,  n - 2 )  topologies. The (b, n)  are obtained: (i) from (b- 1, n)  by 
joining any pair of existing nodes with a single bridge ; (ii) from (b  - 2, n - 1) by inserting 
a new node on an existing bridge and connecting it to an existing node; (iii) from 
( b - 3 ,  n - 2 )  by inserting two nodes on either the same bridge or on different bridges 
and joining them. In each process the cyclomatic index c = b - n +  1 is increased by 
unity. This scheme permits the generation of topologies in order of increasing c, starting 
with the c = 1 topology-the simple polygon. 

The possibility of generating any given topology in more than one way cannot be 
neglected ; in fact the technique just described generates most of the topologies more 
than once, and some means of eliminating duplicates must be devised. This is most 
readily achieved by prescribing a canonical scheme for labelling the nodes. Each 
topology will then possess a unique description, and if the topologies are sorted into a 
suitable dictionary order the problem of identifying duplicates is reduced to triviality. 

The labelling method used here is a generalization of one proposed by Nagle (1966), 
and is as follows. Initially the nodes are labelled 1,2,. . . in order of decreasing degree. 
If, as is usually the case, there is more than one node with a given degree, the labels are 
assigned in such a manner that when the elements of the adjacency matrix A ( A i j  = num- 
ber of bridges between nodes i andj)  are written in the form of a string 

d = A , , A , 2 A 1 ,  . . . A Z 1 A 2 2 . .  . 
the numerical value of d is maximized. Maximization of d requires the examining 
of all node label permutations consistent with the ordering by degree. d is unambigu- 
ously defined and has a different value for each distinct topology, although the prescrip- 
tion for arriving at its value is highly arbitrary. 

If too many nodes of the topology have the same degree, the number of label per- 
mutations required to maximize d becomes inconveniently large. In this case the 
labelling process is accelerated by grouping the nodes according to the numbers of 
two-, three-, . . . step returns to each node, in addition to the degree grouping. The 
number of N-step returns to node i is just (AN)ii. 

Taking into account the symmetries of the topologies reduces the amount of over- 
generation, eg if in process (ii) the (b  - 2, n - 1) topology under consideration has two 
bridges b,  and b2 equivalent under a symmetry transformation, there is no need to 
insert a new node into b Z .  Additional economies arise from the manner in which the 
graph descriptions are handled by the computer, the sorting techniques used, and so on. 

Application of the techniques just outlined yields a list of all the topologies required 
for the series generation. The enumeration of the star graphs themselves is then merely 
a matter of assigning lengths (in terms of chains of edges) to the bridges. By running 
through the possible combinations of bridge lengths (excluding those which lead to 
multi-edges) subject to a fixed total number of edges, all realizations of a given topology 
with given e are produced. Care is required to avoid repeated generation of realizations 
equivalent under a symmetry transformation. In this manner the list of nearly 3000 
distinct star graphs needed for the x - '  series was constructed from the topology list. 

The most time consuming part of the calculation is the evaluation of the lattice 
constants (s; 9). The computer program used for this task is a refinement of one used 
in an earlier calculation (Rapaport 1972a), the principal difference being that rather 
than constructing the possible embeddings by laying the graph edges on the lattice 
bonds one at a time, the graph is constructed from short self-avoiding walks (eg up to 
three edges at a time). This idea was first incorporated in a much used program 
developed by J L Martin (unpublished) ; use of walks instead of edges means a significant 
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reduction in the number of partially completed embeddings which have to be rejected 
because of their failure to meet the self-avoiding condition. A further marked reduction 
in computer time is achieved by coding the program in assembler language, and rates 
of up to a quarter of a million successful embeddings per minute have been achieved 
on an IBM 360/50 computer. 

All the necessary stars were counted with this program, except the very largest 
polygons whose counts appear in the literature (Sykes et a1 1972c) and which are best 
obtained by an indirect method. The star subgraph embeddings required for the weight 
calculation were handled by similar means ; an iterative scheme (Sykes et a1 1966) which 
proved useful when embeddings of all subgraphs-including multi-component-were 
required (Rapaport 1972b), and which avoided the explicit counting of embeddings, 
is not suited to the star problem. 

The final stage is the computation of the star weights QG, either by determining 
l(lG and subtracting the subgraph contributions (5  2.1), or, in the case of the e = 13 stars, 
by using the labelled edge method of 5 2.3. The weights, together with the lattice con- 
stants, yield the following expansion for the Ising model on the FCC lattice : 

x-l = 1 - 1 2 ~ + 1 2 ~ ~ + 3 6 ~ ~ + 1 8 0 ~ ~ + 9 4 8 ~ ~ + 5 5 5 6 ~ ~ + 3 6  132w7+256452wE 

+1  899332w9+ 14470572w''+ 112925988~"+899987260w '~  

+ 7 303 456 5 4 8 ~ ' ~  

the inverse of which (x) appears in the appendix. The terms to twelfth order are identical 
to those of Sykes et al(1972a). The thirteenth is of course new. 

A partial check on the accuracy of the star data is to use them in the generation of 
the partition function (In Z) expansion. Included among 'the stars generated for the 
x- ' study are the majority of those needed to compute In Z to fourteenth order. What 
is missing is the set of fourteen edge stars with all vertices of even degree, but these can 
be obtained using the techniques described earlier. The resulting In Z expansion agrees 
with the published one (Sykes et a1 1972b). This by no means constitutes a complete 
check, because there are a number of stars which contribute to 1- ' but not to In Z to 
the orders considered. 

4. Analysis of the series 

In their analysis of the first eight terms of the FCC susceptibility series Domb and Sykes 
(1957) were able to obtain estimates of the critical temperature corresponding to 
w, = 0.10174 and exponent y = 1.25. The same values were obtained after the addition 
of a further four terms (Sykes et a1 1972a), together with the critical amplitude and 
tentative estimates of the corrections to critical behaviour. More generally, all available 
numerical evidence for two- and three-dimensional Ising systems points to critical 
behaviour of the form 

x - f ( w ) + C , ( l - w / w , ) - ~ + C 1 ( l - W / W , ) - ~ + ' +  . . .  w < w, (4.1) 

with f(w) regular in the neighbourhood of w,. (4.1) applies to close-packed lattices; 
in the loose-packed case it must be supplemented by the antiferromagnetic singularity 
at -w, (Sykes et al 1972a). In three dimensions (4.1) has no rigorous basis, and it is 
only recently that exact results for CO and C,  have been obtained for the two-dimensional 
square lattice (Barouch et a1 1973). 
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Expansion of (4.1) in terms of w suggests that for n >> 1 the coefficients of the x 
series should become 

a, - wc-"(G0nY-' + G,n7-' + . . .). ( 4 4  

The ratios of successive coefficients are then 

r ,  = a,/a,- - w, '( 1 + bl /n+ . . . + bJnk .  . .) (4.3) 

with b ,  = y-1. Truncation of (4.3) at order k corresponds to the kth order Neville 
extrapolant (Hunter and Baker 1973). In a preliminary report (Rapaport 1973) the 
Neville method was used to compute estimates for w, and biased estimates for y. 
Unbiased estimates of y are obtained by truncating (4.3) at kth order and solving the 
resulting sets of equations using the known r , , -k+ . . r , ,  for various n. The results 
appear in table 1. The calculation also yields w, (identical to the Neville results-see 
figure 1) and the higher order coefficients b, . . . . The latter were not observed to settle 
into any regular pattern. 

Table 1.  Unbiased estimates of y (ie b, + 1 )  obtained from equation (4.3) using a kth degree 
polynomial in ljn.  

9 1,24594 1.24952 1,25839 
10 1.24619 1.24833 1.24394 
1 1  1.24626 1.24684 1,24059 
12 1.24622 1.24590 1.24152 
13 1,2461 6 1.24544 1,24305 

If y is (believed) known one can compute w, from 

n 
n+;J-  1 

r: = ____ r ,  - wc- '(1 + b;/n2 + + bL;nk . . .). (4.4) 

Since the term linear in 1:'n is absent the convergence of the U', estimates ought to be 
more rapid than with (4.3). The results appear in figure 1. They lie slightly above the 
estimates from (4.3), but there is no significant improvement in convergence. 

The amplitudes C, are computed by fitting (4.1) to the x expansion. Using the 
values w, = 0.10174, ;' = 1.25 we obtain CO = 0.963-as in Sykes er a1 (1972a), but 
the result is sensitive to the choice of w,. The higher order amplitudes are more difficult 
to determine; the analysis indicates that C, 0.21, but is unable to provide a satisfactory 
estimate for C,. 

Analysis by the Pade method has also been tried. The diagonal and immediate 
off-diagonal approximants of d/dw In x yield results which indicate w, = 0.10174, 
y = 1.248. A number of the approximants contain defects and therefore present a 
possibly over-optimistic picture of the degree of convergence (Hunter and Baker 1973). 
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Figure 1. Plots of the w, estimates obtained from a fit to a kth degree polynomial in ljn of 
form: (a) equation (4.3); (b) equation (4.4). The latter involves the assumption y = i. Note 
the ordinate scale-it is only the 5th and 6th significant digits which are at issue. 

Pade analysis of x ' ' Y  yields essentially the same wc, and from the [7,6] and [ 6 , 1  approxi- 
mants we deduce CO = 0.962. 

A different approach to the analysis is motivated by the fact that the series originally 
derived was that of x-'. The critical point singularity at w, corresponds to the appro- 
priate zero of x(w)-'. The w, estimates obtained from the first n terms of x-' together 
with their Neville extrapolants appear in table 2, and are in complete agreement with 
those obtained previously. 

Table 2. Zeros of the first n terms of x - '  (k = 0 column) and w, estimates obtained by 
Neville extrapolation. 

0 1 2 3 

9 0099549 0.101755 0.101785 0.101 8 14 
10 0.099769 0101753 0.101747 0.10 1 660 
1 1  0099949 0.101 748 0.101725 0.101665 
12 O.lOoo99 0.101743 0101719 0.101700 
13 0.1oO225 0.101 740 0101719 0 101 722 
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5. Application to the classical vector models 

The derivation of the expansion for x -  (0 2.2) is readily extended to include the iso- 
tropically interacting classical vector models-namely the planar model (Bowers and 
Joyce 1967), the Heisenberg model (Wood and Rushbrooke 1966), and the range of 
systems with higher-dimensional spin vectors (Stanley 1971). 

In the Ising case the crucial element in establishing the zero weight of an articulated 
graph G is that the correlation between spins oi and oj on different star components of 
G can be factorized as ( u p j )  = (oio,)(a,oj) with or the spin at the articulation point. 
In the isotropic Heisenberg model symmetry considerations lead to the result (Joyce 
1967) (ai. oj )  = (ai. a,) (a,. aj) so that the correlation between the z components of 
the spins is 

We construct the correlation matrix S = (sij)-the diagonal elements are simply 
sii = (aiz)' = 3 .  The subsequent analysis parallels the king case, and the result is 
again that only the star subgraphs of G contribute to +G. 

The star expansion for x -  may be shown to exist for isotropic systems having any 
spin dimensionality d, the only difference in the analysis is that the number 3 which 
appears when sij is factorized must be replaced by d. The analysis does not apply when 
the interaction is anisotropic, as in a mixed Heisenberg-Ising system, because s i j  no 
longer factorizes. 

Actual development of the expansions for the vector models requires the computation 
of the elements of a matrix analogous to E in (2.14). The partition function of a spin 
cluster G is (K = BJ, L = BmH) 

where the trace is just the normalized integral over the surface of a d-dimensional 
hypersphere for each spin of G and e denotes the edge i - j .  Expanding the exponential 
and setting L = 0 leads to 

Each set {Mer}  corresponds to choosing a subgraph of G and replacing each edge e by 
M ,  edges of type t, with t running through the values x, y ,  and z for Heisenberg spins, 
and correspondingly for the other kinds of system. The sum is over all such sets; an 
upper limit on the values of the M ,  is set by the greatest power of K sought. For con- 
venience we now specialize to the Heisenberg case. 

If D ,  is the degree of vertex U with respect to edges of type t in the graph corresponding 
to the particular set {Mer} ,  then the trace in (5.1) can be written as 
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where 

if all the D,, are even, and zero otherwise. This is a consequence of 

e F 

and the evaluation of the spin integrals arising from the trace. 
We define $, = 32,1Tx. It is then readily established that the elements of E are 

E , j  = 3 Tr oizojz exp K 1 si. bj [ ( e l 1  

with the prime denoting a sum over { M e r }  such that all the D, are even, except Di, 
and D j , .  The diagonal elements are Eii = 2,. In the planar model case we define 
~j, = 22,1Tx, and obtain similar results, but with a modified form of (5.2). The analysis 
is readily extended to handle the other spin systems. 

These results, together with the star graph data generated for the Ising study were 
used to compute the terms of x-' to seventh order for both Heisenberg and planar 
models on the FCC lattice. The results agreed with the published expansions. Ten 
terms are currently available for both Heisenberg and planar model series (Ferer et a1 
1971, 1973). The method is capable of yielding longer series, but the computation time 
required in forming the matrix E increases rapidly with star size. 

6. Summary 

A new approach to the derivation of exact high temperature series expansions for the 
susceptibility of the Ising and classical vector models has been presented. The idea 
behind the method is that one computes the expansion of the inverse susceptibility, for 
which only data on star graphs are required. The method has been used to extend the 
FCC king susceptibility series to thirteenth order, and has also reproduced parts of the 
expansions for the classical Heisenberg and planar spin models. The behaviour of the 
Ising series is already so smooth at twelfth order that the addition of the extra term has 
no significant effect on the estimated critical behaviour of the susceptibility, and merely 
reinforces earlier conclusions. It appears probable that, should the need arise, the 
method could be used to extend the series even further with the extremely powerful 
computers currently available. 
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Appendix. Coefficients of the susceptibility expansion in terms of w = tanh BJ 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

x 
1 
12 
132 
1404 
14652 
151116 
1546332 
15734460 
159425580 
1609987708 
16215457188 
16296 1837500 
1634743 178420 
16373484437340 
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